Quadratic Equations (Solve using the Quadratic Formula)

  1. 1
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ x^2-x-12=0 $$
  2. 2
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ 2x^2-3x+1=0 $$
  3. 3
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. Express your answer as exact roots and as approximate roots to the nearest hundredth. $$ x^2+5x+1=0 $$
  4. 4
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. Express your answer as exact roots and as approximate roots to the nearest hundredth. $$ -5x^2-3x+1=0 $$
  5. 5
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. Express your answer as exact roots and as approximate roots to the nearest hundredth.(if necessary) $$ 2x^2+4x=3x^2-1 $$
  6. 6
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ 4x^2=9x $$
  7. 7
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ 0.2x^2+0.8x=0.6 $$
  8. 8
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ (x-4)(x-1)=12 $$
  9. 9
    The quadratic formula is: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ Solve using the quadratic formula. $$ (3x-1)(x-3)-(x-1)=(2x-5)(x+1) $$

$$e=mc^2$$