Quadratic Functions (Complete the Square)

  1. 1
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=x^2+6x+1$$
  2. 2
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=-x^2+8x+3$$
  3. 3
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=x^2+2x+7$$
  4. 4
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=-x^2-6x+1$$
  5. 5
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=2x^2+10x+1$$
  6. 6
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=-3x^2+18x-10$$
  7. 7
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=\frac{1}{2}x^2+5x+2$$
  8. 8
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=-\frac{1}{2}x^2-4x+2$$
  9. 9
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=0.4x^2+2.4x+5$$
  10. 10
    Write the function in vertex form $y=a(x-h)^2+k $ and state the coordinates of the vertex and the maximum or minimum value. $$y=-0.3x^2+3.6x+5$$

$$e=mc^2$$