Radicals (Part 3) (Complex Numbers - Imaginary Numbers "$i$")

  1. 1
    Simplify: $$\sqrt{-16} $$
  2. 2
    Simplify: $$\sqrt{-9} $$
  3. 3
    Simplify: $$\sqrt{-29} $$
  4. 4
    Simplify: $$\sqrt{-125} $$
  5. 5
    Simplify: $$\sqrt{-40} $$
  6. 6
    Simplify: $$5-\sqrt{-20} $$
  7. 7
    Simplify: $$9+\sqrt{-90} $$
  8. 8
    Simplify: $$17-\sqrt{-52} $$
  9. 9
    Evaluate: $$4i\times\text5i$$
  10. 10
    Evaluate: $$(-7i)\times3i$$
  11. 11
    Evaluate: $$(-5i)\times8i$$
  12. 12
    Simplify $$i^4= $$ $$ $$ $$i^7=$$
  13. 13
    Simplify $$i^{34}= $$ $$ $$ $$i^{35}=$$ $$ $$ $$i^{36}=$$ $$ $$ $$i^{37}=$$
  14. 14
    Simplify: $$(3i\sqrt{5})^2$$
  15. 15
    Simplify: $$(i^6)(2i)^3$$
  16. 16
    Simplify $$(2-5i)(3+4i) $$
  17. 17
    Simplify $$(3+2i)^2 $$
  18. 18
    Simplify $$2i(5i^2-3i+2)$$
  19. 19
    Simplify: $$(3i\sqrt{5})(2i\sqrt{5})$$
  20. 20
    Simplify: $$(-3i\sqrt{2})(4i\sqrt{2})$$
  21. 21
    Simplify: $$\frac{15+20i\sqrt{2}}{10} $$
  22. 22
    Simplify: $$\frac{8-\sqrt{-16}}{4} $$
  23. 23
    Simplify: $$\frac{6+\sqrt{-27}}{9} $$

$$e=mc^2$$